حذف کلیفرمها در تصفیه آب و فاضلاب
روشهای سنتی و نوین حذف کلیفرمها در تصفیه آب و فاضلاب
۱. کلیفرمها و اهمیت حذف آنها
کلیفرمها (شاخص آلودگی مدفوعی) شامل باکتریهایی مانند E. coli هستند که نشانگر آلودگی آب به پاتوژنهای خطرناک (مانند وبا و حصبه) میباشند.
استانداردهای مجاز:
آب شرب: صفر کلیفرم در ۱۰۰ میلیلیتر (WHO/EPA).
فاضلاب تصفیهشده: ≤ ۱۰۰۰ MPN/100 mL (بر اساس کاربرد مجدد).
۲. روشهای سنتی حذف کلیفرمها
الف. کلرزنی (Chlorination)
مکانیسم: گندزدایی با واکنش کلر با دیواره سلولی باکتری.
پارامترهای کلیدی:
CT Value: غلظت کلر (mg/L) × زمان تماس (دقیقه) → حداقل ۱۵ mg·min/L برای حذف ۹۹.۹% کلیفرم.
باقیمانده کلر آزاد: ۰.۲–۰.۵ mg/L (برای جلوگیری از آلودگی ثانویه).
معایب: تشکیل ترکیبات جانبی سرطانزا (THMs، HAAs).
ب. جوشاندن (Boiling)
کاربرد: سیستمهای کوچک یا اضطراری.
شرایط: جوشاندن آب به مدت ۱ دقیقه (در سطح دریا) تا ۳ دقیقه (ارتفاعات بالا).
ج. فیلتراسیون شن (Sand Filtration)
مکانیسم: حذف فیزیکی باکتریها همراه با ذرات معلق.
راندمان: ۵۰–۹۰% (در صورت ترکیب با انعقاد).
۳. روشهای نوین حذف کلیفرمها
الف. پرتو فرابنفش (UV Disinfection)
مکانیسم: تخریب DNA باکتری با طول موج ۲۵۴ نانومتر.
پارامترهای طراحی:
دوز UV: حداقل ۴۰ mJ/cm² برای حذف ۹۹.۹۹% کلیفرم.
شفافیت آب: NTU < ۱ برای عبور مؤثر پرتو.
مزایا: عدم تشکیل ترکیبات جانبی، مناسب برای آبهای کم کدورت.
ب. فیلتراسیون غشایی (Membrane Filtration)
انواع:
اولترافیلتراسیون (UF): حذف ذرات > ۰.۰۱ μm.
نانوفیلتراسیون (NF) و اسمز معکوس (RO): حذف کامل باکتریها.
شار غشایی: ۵۰–۱۵۰ LMH (لیتر بر متر مربع در ساعت).
ج. الکتروکوآگولاسیون (Electrocoagulation)
مکانیسم: تولید یونهای فلزی (Al³⁺/Fe³⁺) با جریان الکتریکی برای لختهسازی و حذف باکتری.
ولتاژ: ۱۰–۵۰ ولت، زمان تماس: ۱۰–۳۰ دقیقه.
د. اکسیداسیون پیشرفته (AOPs)
ترکیبات: ازون/پراکسید هیدروژن (O₃/H₂O₂)، UV/کلر.
مکانیسم: تولید رادیکالهای آزاد (مانند OH·) برای تخریب دیواره سلولی.
۴. محاسبات کلیدی
الف. محاسبه دوز کلر
فرمول:
دوز کلر (mg/L) = (CT مورد نیاز) / زمان تماس (دقیقه)
مثال: CT = ۱۵ mg·min/L، زمان تماس = ۳۰ دقیقه → دوز = ۰.۵ mg/L.
ب. انرژی UV مورد نیاز
فرمول:
انرژی (mJ/cm²) = شدت تابش (μW/cm²) × زمان تماس (ثانیه)
مثال: شدت ۴۰۰ μW/cm²، زمان ۱۰۰ ثانیه → انرژی = ۴۰ mJ/cm².
ج. مساحت غشا در فیلتراسیون
فرمول:
سطح غشا (m²) = دبی (m³/day) / (شار غشایی (LMH) × ۲۴)
مثال: دبی ۱۰ m³/day، شار ۱۰۰ LMH → سطح ≈ ۴.۱۶ m².
۵. طراحی سیستمها
الف. سیستم UV
اجزا:
لامپهای UV-C در محفظه استیل ضدزنگ.
سیستم تمیزکننده خودکار (برای جلوگیری از رسوب).
نکات: نصب پس از فیلتراسیون برای کاهش کدورت.
ب. سیستم کلرزنی
تجهیزات:
مخزن ذخیره کلر (گاز/مایع).
مخزن تماس با زمان ماند ≥ ۳۰ دقیقه.
ج. سیستم الکتروکوآگولاسیون
طراحی:
سلول الکترولیتی با الکترودهای آلومینیوم/آهن.
منبع تغذیه DC با کنترل جریان.
۶. مقایسه روشها
روش مزایا معایب هزینه
کلرزنی ارزان ، باقیمانده محافظ تشکیل THMs کم
UV عدم ترکیبات جانبی وابسته به شفافیت آب متوسط
غشایی حذف کامل باکتریها هزینه بالای نگهداری بالا
الکتروکوآگولاسیون حذف همزمان فلزات سنگین مصرف انرژی بالا متوسط-بالا
۷. اجرا و چالشها
کلرزنی: مدیریت THMs با استفاده از کربن فعال یا جایگزینی کلرامین.
UV: پایش مداوم شدت لامپها و شفافیت آب.
غشایی: شستشوی معکوس (Backwash) دورهای برای جلوگیری از گرفتگی.
الکتروکوآگولاسیون: جایگزینی الکترودها به دلیل خوردگی.
۸. مثال طراحی
شرایط:
دبی فاضلاب: ۲۰۰ m³/day
روش انتخابی: ترکیبی از UV + کلرزنی.
محاسبات:
دوز UV: ۴۰ mJ/cm² → انتخاب دستگاه با توان ۸۰۰ W و زمان تماس ۶۰ ثانیه.
دوز کلر: ۰.۵ mg/L (برای باقیمانده محافظ) → مصرف روزانه: ۰.۱ kg/day.
تجهیزات:
محفظه UV با ۱۰ لامپ ۸۰ واتی.
مخزن ۵۰۰ لیتری هیپوکلریت سدیم با پمپ دوزینگ.
۹. نتیجهگیری
انتخاب روش حذف کلیفرمها به عواملی مانند هزینه، مقیاس سیستم، و ملاحظات محیط زیستی بستگی دارد. روشهای سنتی مانند کلرزنی برای سیستمهای بزرگ مقرونبهصرفه هستند، در حالی که فناوریهای نوین مانند UV و غشایی برای آبهای با کیفیت بالا و حساسیت بهداشتی مناسباند. ترکیب روشها (مثال: UV + کلر) میتواند ایمنی و راندمان را افزایش دهد.