نکات و خطرات نیتریت (NO₂⁻) در آب آشامیدنی
۱. نکات و خطرات نیتریت (NO₂⁻) در آب آشامیدنی
منشأ و شیمی محیطی
نیتریت حاصل اکسیداسیون جزئی آمونیاک (NH₃ → NH₄⁺ → NO₂⁻) یا کاهش نیترات (NO₃⁻ → NO₂⁻) توسط باکتریهای نیتریفایر/دینیتریفایر در شرایط کماکسیژن است.
ناپایدارتر و واکنشپذیرتر از نیترات؛ در سیستمهای پرآب و با تهویهٔ ضعیف لولهها یا فاضلابهای خانگی و کشاورزی تجمع مییابد.
اثرات بهداشتی
متهموگلوبینمی (Blue Baby Syndrome): نیتریت در خون با هموگلوبین ترکیب شده و متهموگلوبین میسازد که توان حمل اکسیژن را کاهش میدهد. بیشترین حساسیت در نوزادان زیر ۶ ماه.
تشکیل نیتروزآمینها: در معده و روده، نیتریت میتواند با آمینوفورمها واکنش داده و نیتروزآمینهای سرطانزا (NDMA و غیره) تولید کند.
سمیت مزمن: مطالعات حیوانی نشاندهنده تومورهای دستگاه گوارش و اختلال در عملکرد غدد درونریز است.
۲. شیوههای تصفیه و حذف نیتریت
فرآیند بیولوژیک (Biological Denitrification با مرحله آنوکسیک)
راکتور خلأ یا بستر متحرک با افزودن منبع کربن (متانول، اتانول): تبدیل NO₂⁻ → N₂(g)
کنترل دقیق pH (≈7) و زمان ماند (4–8 ساعت)
تبادل یونی (Ion Exchange)
رزینهای آنیونی قوی (گروه چهارگانه آمونیوم) → جایگزینی NO₂⁻ با Cl⁻ یا OH⁻
شارژ مجدد با محلول NaCl یا NaOH
اسمز معکوس (RO)
حذف ۸۰–۹۵٪ نیتریت بسته به ممبران و شرایط عملیاتی
نیازمند پساب شور و پیشتصفیه برای حذف ذرات معلق
نانوفیلتراسیون (NF)
حذف ۵۰–۷۵٪ نیتریت؛ ممبرانهای با اندازه منافذ ~1 nm
کاهندههای شیمیایی (Chemical Reduction)
افزودن سولفیت سدیم یا سولفیت کلسیم → احیای NO₂⁻ → NH₄⁺ یا ازت گازی
نیاز به تنظیم pH (~7–8)
۳. روشهای اندازهگیری آزمایشگاهی
Griess Colorimetric Method
واکنش NO₂⁻ با سولفانامید و N‑(1‑نفتیل)اتیلندیآمین → کمپلکس صورتی (λ≈540 nm)
حد تشخیص ~ 0.02 mg/L
Ion Chromatography (IC)
تفکیک آنیونها و تشخیص کنداکتیویتی؛ حد تشخیص ~ 0.01 mg/L
Flow Injection Analysis (FIA) با واکنش Griess
جریان مداوم، سرعت بالا، حجم نمونه کم
UV Spectrophotometry
اندازهگیری مستقیم در λ≈210–220 nm با تصحیح در λ≈275 nm؛ حد تشخیص ~ 0.1 mg/L
Electrochemical Sensors
الکترود ISE نیتریتساز با پاسخ پتانسیلی نرنستی
۴. روشهای سنتی حسی و چشمی
طعم و بو
نیتریت در غلظتهای محیطی: بیبو و بیطعم؛ در غلظتهای بیش از چند mg/L ممکن است طعم تلخ یا فلزی ضعیف احساس شود، اما غیرقابلاتکا.
رنگ و کدورت
آب شفاف و بیرنگ باقی میماند؛ هیچ تغییر ظاهری ایجاد نمیکند.
آزمون میدانی ساده
افزودن محلول Griess به نمونه + مشاهده رنگ صورتی کمرنگ (مقیاسی و نیمهکمی).
نوار تست (Test Strips)
نوار آغشته به معرف Griess: تغییر رنگ متناسب با غلظت (محدوده ppm).
۵. سایر روشهای ساده و پیشرفته
µPADs (Microfluidic Paper‑Based Devices)
کانالهای کاغذی با واکنش Griess و خوانش موبایلی؛ سریع و قابلحمل
سنسورهای نانوفناوری
نانوذرات طلا/نقره با لیگاند آمین یا نیتروفنیل برای تشخیص اسپکتروفتومتریک
DGT (Diffusive Gradients in Thin Films)
جذب پیوسته NO₂⁻ در رزین در ژل → پایش بلندمدت
Biosensors (بیوسنسورها)
آنزیمهای نیتریت اکسیداز یا سلولهای مهندسیشده با تغییر فلورسانس یا جریان الکتریکی
۶. علائم و نشانههای محیطی وجود نیتریت
منابع آلاینده
فاضلابهای نیمهگندیده شهری–صنعتی، فاضلاب دامداری و مرغداری، نشت از زهاب کودهای ازته
اثر بر اکوسیستم آبی
محرک رشد جلبکها و فیلامنتهای باکتریایی در شرایط آنوکسیک → انسداد لولهها و کاهش اکسیژن محلول
شاخصهای شیمیایی
نسبت NO₂⁻/NO₃⁻ بالاتر از ۰.۱ در آبهای زیرزمینی کمشور نشاندهنده ورود گاهبهگاه آلودگی تازه است.
بیواندیكاتورها
افزایش فعالیت آنزیم نیتریت اکسیداز در بافتهای ماهیها و بیمهرگان آبزی
جمعبندی مهندسی:
از آنجا که نیتریت بیبو، بیرنگ و بسیار واکنشپذیر است، پایش دورهای آب با روشهای دقیق (Griess یا IC) و بهکارگیری سامانههای ترکیبی «بیولوژیک/تبادل یونی/غشا» برای حذف مؤثر آن از آب آشامیدنی حیاتی است. در میدانی، µPADها و نوارهای تست میتوانند غربالگری اولیه انجام داده و نمونههای مشکوک را به آزمایشگاه ارجاع دهند.
حذف نیتریت (NO₂⁻) در تصفیه آب و فاضلاب
حذف نیتریت (NO₂⁻) از آب و فاضلاب به دلیل سمیت بالا و نقش آن در تشکیل ترکیبات سرطانزای نیتروزآمین، از اهمیت ویژهای برخوردار است. نیتریت معمولاً در فاضلاب صنایع شیمیایی، کشاورزی (ناشی از کودهای نیتروژنه) و فرآیندهای ناقص نیتریفیکاسیون/دنیتریفیکاسیون یافت میشود. در ادامه روشهای سنتی و نوین حذف نیتریت، بهینهسازی، فرمولها و ساختارهای اجرایی ارائه میشود:
روشهای سنتی حذف نیتریت:
دنیتریفیکاسیون بیولوژیکی (Biological Denitrification):
تبدیل نیتریت به نیتروژن گازی (N₂) توسط باکتریهای بیهوازی (مانند Pseudomonas و Paracoccus).
فرمول واکنش:
N2↑+2OH−+2H2O→باکتریها2NO2−+3H2 مزایا: سازگار با محیط زیست و تبدیل نیتریت به گاز بیخطر.
معایب: نیاز به کنترل دقیق pH (~۷–۸) و منبع کربن (مانند متانول).
اکسیداسیون شیمیایی (Chemical Oxidation):
استفاده از ازن (O₃) یا پراکسید هیدروژن (H₂O₂) برای اکسیداسیون نیتریت به نیترات (NO₃⁻).
فرمول واکنش:
NO2−+O3→NO3−+O2مزایا: سرعت بالا و حذف کامل نیتریت.
معایب: هزینه بالای مواد اکسیدان و تشکیل نیترات (که خود نیاز به حذف دارد).
تبادل یونی (Ion Exchange):
استفاده از رزینهای تبادل آنیونی انتخابی برای جذب نیتریت.
فرمول کلی:
-R-Cl+NO2−→R-NO2+Clمزایا: مناسب برای غلظتهای پایین.
معایب: نیاز به احیای دورهای با محلول NaCl و هزینه بالای رزین.
روشهای نوین حذف نیتریت:
الکتروشیمیایی (Electrochemical Reduction):
استفاده از الکترودهای کاتدی (مانند مس یا پالادیوم) برای کاهش نیتریت به نیتروژن گازی یا آمونیاک.
فرمول واکنش:
NO2−+6H++4e−→NH2OH+H2Oمزایا: کنترل دقیق فرآیند و کاهش مصرف مواد شیمیایی.
معایب: هزینه انرژی و نیاز به الکترودهای ویژه.
فوتوکاتالیستها (Photocatalysis):
استفاده از نانوذرات دیاکسید تیتانیوم (TiO₂) تحت تابش UV برای تجزیه نیتریت.
فرمول واکنش:
NO2−+TiO2 UV→NO3−+•OHمزایا: عدم تولید پسماند شیمیایی.
معایب: نیاز به نور UV و هزینه تجهیزات.
نانو جاذبهای انتخابی (Selective Nanoadsorbents):
استفاده از نانوذرات اکسید آهن (Fe₃O₄) یا بیوچار اصلاحشده برای جذب نیتریت.
مکانیسم: جذب از طریق بار سطحی و تشکیل کمپلکس.
مزایا: ظرفیت جذب بالا (تا ۸۰ mg/g) و امکان بازیابی جاذب.
فرآیندهای ترکیبی (Hybrid Processes):
ترکیب الکتروشیمیایی با بیولوژیکی برای تبدیل نیتریت به N₂.
مثال: کاهش الکتروشیمیایی نیتریت به NO و سپس تبدیل بیولوژیکی به N₂.
بهینهسازی روشها:
pH:
دنیتریفیکاسیون: pH ~۷–۸.
الکتروشیمیایی: pH ~۴–۶ برای بهبود بازده کاهش.
پتانسیل اکسیداسیون-کاهش (ORP):
حفظ ORP بین -۵۰ تا +۵۰ mV برای فعالیت بهینه باکتریها.
غلظت ماده آلی (COD):
نسبت COD:NO ₂⁻ ≈ ۳:۱ برای دنیتریفیکاسیون.
ولتاژ در الکتروشیمیایی: ۱–۳ ولت برای جلوگیری از تشکیل محصولات جانبی.
فرمولهای کلیدی:
نرخ دنیتریفیکاسیون:
(Ks+S)/(μmax⋅X⋅S)=r-
r: نرخ واکنش، μmax: نرخ رشد بیشینه، X: غلظت زیستتوده، S: غلظت نیتریت.
ایزوترم جذب لانگمویر:
- Ce/qe=1/(KL*qm)+Ce/qm
ساخت و اجرا:
طراحی سیستم:
برای فاضلاب شهری: استفاده از راکتورهای بیولوژیکی (مانند SBR یا MBBR) همراه با افزودن منبع کربن.
برای فاضلاب صنعتی: ترکیب الکتروشیمیایی با جذب سطحی.
مواد و تجهیزات:
رزینهای تبادل یونی، الکترودهای گرافیتی/پالادیوم، نانوذرات TiO₂، راکتورهای فوتوکاتالیستی.
نصب و راهاندازی:
ساخت راکتورهای بیولوژیکی با سیستم هوادهی، سلولهای الکتروشیمیایی یا ستونهای جذب.
نصب سنسورهای pH، ORP و کنترلرهای جریان.
نگهداری:
احیای رزینها با NaCl، تمیزکاری الکترودها و جایگزینی جاذبهای اشباعشده.
نتیجهگیری:
روشهای سنتی مانند دنیتریفیکاسیون بیولوژیکی و اکسیداسیون شیمیایی به دلیل سادگی و هزینه پایین، همچنان کاربرد دارند. اما روشهای نوین مانند الکتروشیمیایی، فوتوکاتالیستها و نانو جاذبها به دلیل بازده بالا و امکان بازیابی نیتروژن، برای سیستمهای پیشرفته مناسب هستند. انتخاب روش نهایی باید بر اساس غلظت نیتریت، هزینه و مقررات زیستمحیطی انجام شود. بهینهسازی پارامترهایی مانند pH، ORP و نسبت COD:NO ₂⁻ نقش کلیدی در افزایش بازده دارد.